Influences of mRNA secondary structure on initiation by eukaryotic ribosomes.

نویسنده

  • M Kozak
چکیده

Oligonucleotides designed to create hairpin structures were inserted upstream from the ATG initiator codon in several plasmids that encode preproinsulin, and the effects on translation were monitored in COS cells transfected by the vectors. Creation of a hairpin (delta G = -30 kcal/mol) that directly involves the ATG triplet at the start of the preproinsulin coding sequence does not reduce the yield of proinsulin. However, a more stable stem-and-loop structure (delta G = -50 kcal/mol) reduces the proinsulin yield by 85-95%. The stable hairpin inhibits even when it occurs at the midpoint of the 5' untranslated sequence and thus involves neither the cap nor the ATG codon. Presumably the migrating 40S ribosomal subunit can melt moderately stable duplexes but stalls at structures (delta G = -50 kcal/mol) that resist unfolding. Other experiments argue against the idea that sequestering the 5'-proximal ATG codon in a hairpin structure might allow it to be skipped by ribosomes in favor of an exposed ATG triplet farther downstream: when the primary sequence around the first ATG triplet is favorable for initiation, no translation from a downstream site can be detected, irrespective of whether the first ATG codon is single-stranded or base-paired.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak 5′-mRNA Secondary Structures in Short Eukaryotic Genes

Experimental studies of translation have found that short genes tend to exhibit greater densities of ribosomes than long genes in eukaryotic species. It remains an open question whether the elevated ribosome density on short genes is due to faster initiation or slower elongation dynamics. Here, we address this question computationally using 5'-mRNA folding energy as a proxy for translation init...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF...

متن کامل

Translational control of mRNAs by 3′-Untranslated region binding proteins

Eukaryotic gene expression is precisely regulated at all points between transcription and translation. In this review, we focus on translational control mediated by the 3'-untranslated regions (UTRs) of mRNAs. mRNA 3'-UTRs contain cis-acting elements that function in the regulation of protein translation or mRNA decay. Each RNA binding protein that binds to these cis-acting elements regulates m...

متن کامل

A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors.

Translation initiation in eukaryotic cells is known to be a complex multistep process which involves numerous protein factors. Here we demonstrate that leaderless mRNAs with initiator Met-tRNA can bind directly to 80S mammalian ribosomes in the absence of initiation factors and that the complexes thus formed are fully competent for the subsequent steps of polypeptide synthesis. We show that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 9  شماره 

صفحات  -

تاریخ انتشار 1986